Принцип работы антенны в диапазоне hdx. Рейтинг самых мощных антенн для цифрового тв. Антенны бегущей волны

Принцип работы антенны в диапазоне hdx. Рейтинг самых мощных антенн для цифрового тв. Антенны бегущей волны
Принцип работы антенны в диапазоне hdx. Рейтинг самых мощных антенн для цифрового тв. Антенны бегущей волны

Требования, предъявляемые к антеннам

1. Антенна совместно с ФТ должна обладать высоким переходным затуханием (А п, дБ) между трактами приема и передачи.

А п =10 lg Р и /Р пм ,

где Р и - излучаемая мощность,

Р пм – мощность, попадающая на вход приемника.

2. Антенна должна обеспечивать приемлемое согласование с ФТ.

КБВ=1 имеем идеальное согласование с ФТ;

КБВ=0 – излучения нет

3. Антенны должны обеспечивать высокий КЗД (более 60 дБ).

4. Антенны должны обладать узкой ДН и за счет направленных свойств антенны обеспечивать дополнительное усиление сигнала .

5. Антенны должны иметь большой КИП .

Для РРСП 0,5-0,65; для ССП – 0,7-0,75.

Апертурные антенны – это антенны, излучение у которых происходит через раскрыв, называемый апертурой (апертура – отверстие, возбужденная поверхность).

Зеркальные антенны . Зеркальными, называются антенны, у которых поле в раскрыве формируется в результате отражения ЭМВ от металлической поверхности специальной формы (зеркала).

Источником ЭМВ, как правило, служит небольшая элементарная антенна, называемая облучателем.

Конструкция зеркальных антенн включает два элемента: зеркало и облучатель.

Параболическая антенна (ПА )

Конструкция ПА включает два элемента:

сплошное металлическое зеркало, выполненное в виде параболоида вращения;

рупорный облучатель, размещаемый в фокусе

Соотношения, характеризующие параболическое зеркало:

Раскрыв зеркала – это плоскость, ограниченная краями параболоида вращения и осью z=Z 0 ;

- R 0 – радиус раскрыва, радиус плоскости раскрыва;

- 0 – угол раскрыва, угол под которым видно зеркало из фокуса;

- f – фокусное расстояние;

- р – параметр параболоида, р =2 f.

Величины R 0 , φ 0 и f связаны между собойсоотношением: tg (φ 0 /2)= R 0 /2 f.

В зависимости от параметров R 0 , φ 0 и f зеркала бывают:

Мелкими или длиннофокусным, если φ 0 <π/2 или R 0 <2 f ;

Глубокими или короткофокусными, если φ 0 >π/2 R 0 >2 f.

Требования, предъявляемые к облучателям :

Облучатель должен иметь небольшие (оптимальные) размеры, чтобы не затенять зеркало;

Облучатель должен быть однонаправленным;

Облучатель должен создавать равномерное и синфазное наведение токов.

Достоинство ПА: ее широкополосность, относительная простота и малая стоимость.

Недостаток : заметная обратная реакция центральной части отражателя на облучатель.

Двухзеркальная гиперболическая антенна (АДГ)

Достоинство ДГА :



Небольшие габаритные размеры;

Небольшая длина ВТ;

Низкие шумовые температуры,

Высокие коэффициенты ЗД и БВ;

Хорошее согласование с ВТ.

Недостаток : сложность конструкции, настройки, узкий диапазон рабочих частот.

Антенна двухзеркальная эллиптическая (АДЭ)

Достоинство АДЭ :

Наличие конического острия у вспомогательного зеркала устраняет реакцию второго зеркала на облучатель, улучшает согласование антенны с ВТ, сокращает расстояние между облучателем и вторым зеркалом, уменьшает утечку энергии за основное зеркало;

Высокие коэффициенты усиления ЗД, ИП.

Недостаток : сложность конструкции.

Рупорно-параболическая антенна РПА образована плавным переходом рупорного облучателя (2) в отражающее зеркало (1). Рупор длиной 50-100λ, одним концом подключен к питающему волноводу, а другим непосредственно соединяется с сегментом параболоида вращения Угол раскрыва рупора ψ берется равным 30 0 - 40 0 , что обеспечивает его хорошее согласование с питающим волноводом.

Достоинства РПА :

Отсутствует рассеивание энергии облучателя, которым является рупор, что повышает КПД зеркальной антенны и ведет к уменьшению боковых и обратных лепестков.

Отраженные от зеркала лучи не попадают в питающую линию, и, следовательно, не нарушают согласование (высокий КБВ).

Недостатки:

Большие размеры и вес, что приводит к парусности антенны, и большим ветровым нагрузкам;

Сложность в обслуживании.

Перископические антенные системы (ПАС) . представляют собой комбинацию двух зеркал – верхнего (плоского) (1), размещаемого на мачте и нижнего (криволинейного) (2), куда поступает энергия облучателя (3).

Нижнее зеркало представляет собой часть эллипсоида вращения, один из фокусов F 1 которого совпадает с центром облучателя. Верхнее зеркало располагают во втором фокусе F 2 эллипсоида на необходимой высоте.

Достоинства ПАС :

Короткий волноводный тракт (нет потерь в волноводе), что обеспечивает высокие значения КПД и КБВ в широкой полосе частот;

Устойчивость в работе при неблагоприятных климатических условиях;

Легкость обслуживания.

Недостатки:

Экологическая опасность (мачта излучает энергию); - низкий КЗД, что не позволяет использовать их при ПРЧ-2.

2-х элементная ПАС

Сравнительная оценка параметров зеркальных антенн разных типов

Фидерные тракты (ФТ) / (ВТ)

ФТ - специальная линия передачи электромагнитной энергии от передатчика к антенне (или от антенны к приемнику)

Требования к антенно-волноводному тракту:

1. малые потери энергии

2. хорошее согласование

3. высокая линейность фазовой и частотной характеристики

4. минимальное взаимное влияние между сигналами, которые идут на прием и передачу.

5. многократность использования АФТ достигается следующим путем:

Предусмотрено три вида селекции:

По поляризации (ПС);

По направлению (ФЦ, НО)

По частоте (РФ, ПФ)

ПС представляет собой волноводный тройник, сочетающий отрезки волноводов круглого и прямоугольного сечений

Антенны (от лат. слова antenna -- мачта, рея) В передатчиках служат для преобразования радиочастотных электрических колебаний в энергию электромагнитного поля (радиоволн), в приемниках - для преобразования энергии радиоволн в токи радиочастоты. Любую антенну можно использовать как для передачи, так и для приема, причем ее характеристики (диапазон частот, направленные свойства и др.) сохраняются. Этим в значительной мере объясняется тот факт, что назначение антенны (приемная или передающая) ее условное обозначение обычно не отражает. Само расположение символа антенны на схеме однозначно определяет ее функцию (напомним, что развитие схемы, как правило, происходит слева направо).

Общее обозначение антенны (см. рис. 2 и 19,ж) применяют в тех случаях, когда нужно показать несимметричную антенну, т. е. антенну, соединяемую с передатчиком или приемником одним проводом (вторым проводам служит земля). Такие антенны используют в диапазонах длинных, средних и коротких воли. В ультракоротковолновом диапазоне, а также в коротковолновом применяют симметричные антенны, т. е. антенны с двухпроводным выходом (или входом). Общее обозначение симметричной антенны отличается от указанных наличием двух выводов (рис. 154,а).

Назначение и особенности антенны в самом общем виде показывают знаками направления распространения потока электромагнитной энергии. Символы приемной, передающей и приемно-передающей антенны, построенные с применением этих знаков, показаны на рис. 40,в-д.

Стандарт ЕСКД предусматривает специальные знаки для указания таких особенностей антенн, как ширина и характер движения (вращение, качание) главного лепестка диаграммы направленности, тип поляризации, направленность по азимуту и высоте и т. д. В качестве примеров использования таких знаков на рис. 154 показаны условные обозначения вращающейся антенны (б) и антенн с горизонтальной (в) и вертикальной (г) поляризацией.

Для повышения эффективности несимметричных передающих и приемных антенн используют заземление (в простейшем случае - это металлический лист или труба, зарытые на глубину почвенных вод). На схемах заземление изображают тремя короткими штрихами, вписанными в прямой угол (рис. 155,а). Иногда вместо заземления применяют противовес - большое число проводов, натянутых над поверхностью земли на небольшой высоте. Такое устройство обозначают двумя параллельными линиями разной длины, большая из которых символизирует землю (рис. 155,6).

Рассмотренные условные обозначения построены функциональным методом. Другими словами, за их основу взят общий символ антенны, а характеристики выражены вспомогательными знаками. В радиотехнике такие обозначения применяют в основном в структурных и функциональных схемах, т. е. на первых этапах разработки прибора, когда характеристики антенны определены, а конкретный тип ее еще не выбран.

В принципиальных схемах чаще используют условные графические обозначения, напоминающие предельно упрощенные рисунки конкретных разновидностей антенн. Так, простейшую антенну - несимметричный вибратор (вертикальный провод, штырь) изображают отрезком вертикальной утолщенной линии (рис. 156). Подобные антенны применяют в диапазонах длинных, средних, коротких и ультракоротких волн.

Однако для хорошей работы такой антенны ее длина должна быть равна примерно четверти длины рабочей волны. В диапазонах коротких и ультракоротких волн, длина которых не превышает нескольких десятков метров, это требование выполнить легко, а вот на средних и тем более на длинных волнах - гораздо труднее, так как четверть длины волны в этих диапазонах достигает сотен метров. Чтобы не строить дорогостоящие высотные сооружения, к верхнему концу вертикального провода (вибратора) присоединяют один или несколько горизонтальных проводов, действие которых заключается в кажущемся удлинении вибратора. На схемах Г-образную и Т-образную антенны обозначают символами, наглядно передающими их характерные особенности (рис. 157,а, б).

У рассмотренных несимметричных вибраторов излучателем (приемником) радиоволн служит вертикальная часть. В диапазонах же коротких и ультракоротких волн в силу особенностей их распространения обычно применяют антенны, у которых рабочими являются горизонтальные части. Простейшей антенной в эдах диапазонах является симметричный вибратор, представляющий собой два изолированных горизонтальных проводника одинаковой длины, между которыми подключена двухпроводная линия, соединяющая антенну с приемником или передатчиком. Эту линию связи называют фидером (от англ. feeder - питатель). Общая длина вибратора обычно равна примерно половине длины рабочей волны. «

Симметричный вибратор (его условное графическое обозначение показано на рис. 158) обладает явно выраженными направленными свойствами. Лучше всего он принимает или излучает в плоскости, перпендикулярной его оси, хуже всего - в плоскостях, проходящих через нее. Поэтому такую. антенну (например, для приема телевидения) располагают таким образом, чтобы ее горизонтальные части (плечи) были перпендикулярны направлению на телецентр.

На практике часто требуется, чтобы антенна могла излучать или принимать радиоволны в достаточно широкой полосе частот. Достигают этого ис; пользованием в качестве плеч вибратора нескольких параллельных провод,ни ков, соединенных концами. Антенны такой конструкции, известные под названием диполя Надененко, нашли широкое применение в коротковолновой связи. С той же целью (расширение диапазона частот) телевизионные антенны часто изготовляют из отрезков толстых трубок или применяют сложные вибраторы, например петлевые.

Петлевой вибратор представляет собой два полуволновых вибратора, соединенных концами. Эта особенность конструкции петлевого вибратора нашла отражение и в его условном обозначении (рис. 159).

Важным условием хорошей работы антенны является согласование ее входного сопротивления с волновым сопротивлением фидера , так как только в этом случае она может излучать или принимать наибольшую мощность. Для согласования антенн с фидером используют специальные устройства в виде отрезков двухпроводных линий или применяют так называемое шунтовое питание вибраторов.

Симметричный вибратор шунтового питания представляет собой сплошной проводник длиной, также равной половине длины волиы. Фидер подключают к нему в двух точках, расположенных симметрично относительно его середины. Изменяя места подключения фидера к вибратору, можно добиться равенству входного сопротивления антенны волновому сопротивлению фидера, т. е. согласования. Точно так же согласовывают с фидером и петлевые вибраторы шунтового питания. Условное обозначение полуволнового вибратора с шунто-вым питанием представлено на рис. 160.

При использовании в качестве фидера коаксиального кабеля возникает необходимость в симметрировании, т. е. создании условий, при которых токи в точках подсоединения к вибратору имеют противоположные фазы. На практике симметрирующее устройство выполняют в виде отрезка кабеля полуволновой длины, согнутого в виде буквы U. Питание через коаксиальный кабель с симметрирующим устройством такого рода иллюстрирует условное обозначение петлевого вибратора, показанное на рис. 161 (кабель здесь обозначен кружком с отрезком касательной, параллельной линии электрической связи, а согласующее устройство - дугой, соединяющей выводы вибратора).

Для связи на коротких волнах антенны должны быть однонаправленными, т. е. излучать и принимать радиоволны они должны только с одного направления. Типичным представителем таких антенн является ромбическая антенна, представляющая собой ромб, выполненный из провода, стороны которого примерно вчетверо больше длины волны. К одному из острых углов антенны подключают двухпроводный фидер, а к другому - поглощающую нагрузку, сопротивление которой равно волновым сопротивлениям антенны и фидера. В условном обозначении ромбической антенны символ резистора (поглощающей нагрузки) уменьшен по сравнению с обычным примерно вдвое. _ Это делает обозначение антенны более компактным (рис. 162).

В метровом и дециметровом диапазонах волн часто используют антенны «волновой канал », обладающие значительно большим, по сравнению с одиночным вибратором, коэффициентом направленного действия. Такая антенна, кроме основного - активного - вибратора, содержит неоколько пассивных. Один из них, расположенный за активным, называют рефлектором (от лат. reflectere - отражать), остальные (расположенные перед активным) - директорами (directio - направлять). Длина рефлектора - несколько больше, а директоров - несколько меньше длины активного вибратора. На схемах это показывают различной длиной соответствующих символов в условном обозначении антенны «волновой канал» (рис. 163).

С целью улучшения направленных свойств антенн применяют также металлические рефлекторы в виде согнутых из металлического листа уголков, параболоидов и т. п. Условное обозначение такого рефлектора воспроизводит (конечно, упрощенно) его профиль в сечении. В качестве примера на рис. 164 доказаны условные графические обозначения антенны с излучателем (приемником) в виде симметричного вибратора и уголковым рефлектором (а) и антенны с криволинейным рефлектором (б), вибратор которой питается через коаксиальный кабель (симметрирующее устройство дли простоты не изображено) .

Для передачи электромагнитной энергии в диапазонах сантиметровых и миллиметровых волн используют волноводы - металлические Трубы, обычно прямоугольного сечения. Открытый конец волновода излучает электромагнитные волны. Чтобы улучшить излучение, к нему пристраивают пирамидальную воронку, которую называют рупорной антенной. Условное обозначение последней приведено на рис. 165. Здесь уголок, напоминающий гнездо разъемного соединения, символизирует рупор антенны, прямоугольник на присоединенной к нему линии электрической связи - волновод прямоугольного сечения.

Улучшение направленных свойств в этих диапазонах волн можно также получить применением металлического рефлектора, поместив в его раскрыв рупорный излучатель (рис. 166). Хорошими направленными свойствами обладает и так называемая диэлектрическая антенна . Она представляет собой сплошной или полый стержень из высококачественного диэлектрика (полистирола, полиэтилена), на основание которого надет металлический стакан, выполняющий функции рефлектора. На расстоянии в четверть длины волны от дна стакана в теле антенны закреплен возбуждающий штырь. Благодаря особой форме образующей стержня Электромагнитные волны выходят из него под одинаковыми углами к оси, в результате чего и создается направленное излучение. Условное графическое обозначение диэлектрической антенны - узкий заштрихованный наклонными линиями треугольник с линией-выводом от меньшего основания (рис.. 167).

Широкое применение в радиоприемной технике нашли так называемые магнитные антенны (они реагируют не на электрическую составляющую электромагнитных волн, как все рассмотренные ранее антенны, а на магнитную). Простейшая антенна такого типа - рамка, состоящая из одного или нескольких витков провода. Независимо от формы витков рамочную антенну изображают в виде незамкнутого квадрата с линиями-выводами от соседних сторон (рис. 168).

Гораздо чаще используют магнитные антенна с магнитопроводом из феррита. На схемах их обозначают как одну или несколько (по числу обмоток) катушек индуктивности с общим магнитопроводом, но в отличие от последних располагают всегда горизонтально (рис. 169,а).

Принадлежность к антенным устройствам показывают общим символом, помещая его над серединой условного обозначения магнитопровода. Обмотки магнитной антенны обычно используют в качестве катушек входных колебательных контуров, поэтому обозначают их кодом катушек - латинской буквой L, а возможность подстройки их индуктивности (перемещением по магнитопроводу) показывают уже знакомым знаком подстроечного регулирования (рис. 169,6).

Антенна - устройство для излучения и/или приёма электромагнитных волн путём прямого преобразования электрического тока в излучение (при передаче) или излучения в электрический ток (при приёме).

Обычно термин «антенна» используется для устройств, работающих в радиочастотном диапазоне , но существуют опытные образцы наноантенн , способных принимать электромагнитное излучение инфракрасного и видимого спектра.

Как правило, антенна работает совместно с радиопередатчиком или радиоприемником . Антенна в режиме передачи преобразует энергию поступающего от радиопередатчика электромагнитного колебания в распространяющуюся в пространстве электромагнитную волну. Антенна в режиме приема преобразует энергию падающей на антенну электромагнитной волны в электромагнитное колебание, поступающее в радиоприемник. Таким образом, антенна преобразует переменный электрический ток в электромагнитное излучение и наоборот.

Первые антенны были созданы в 1888 году Генрихом Герцем в ходе его экспериментов по доказательству существования электромагнитной волны (Вибратор Герца ). Форма, размеры и конструкция созданных впоследствии антенн чрезвычайно разнообразны и зависят от рабочей длины волны и назначения антенны. Нашли широкое применение антенны, выполненные в виде отрезка провода, системы проводников, металлического рупора, металлических и диэлектрических волноводов , волноводов с металлическими стенками с системой прорезанных щелей, а также многие другие типы. Для улучшения направленных свойств первичный излучатель может снабжаться рефлекторами - отражающими зеркалами различной конфигурации и системами зеркал, а также линзами. Излучающая часть антенн, как правило, изготавливается с применением проводящих электрический ток материалов, но может изготовляться из изоляционных (диэлектрик) материалов, могут применяться полупроводники и метаматериалы .

С точки зрения теории электрических цепей антенна представляет собой двухполюсник (или многополюсник), и мощность источника, выделяемая на активной составляющей полного входного сопротивления антенны расходуется на создание электромагнитного излучения. В системах автоматического регулирования антенна рассматривается как дискриминатор - датчик угла рассогласования между направлением на источник сигнала или отражатель и ориентацией носителя (например, антенна с суммарно-разностной диаграммой направленности в составе радиолокационной головки самонаведения). В системах пространственно-временной обработки сигнала антенна (антенная решетка) рассматривается как средство дискретизации электромагнитного поля по пространству. В особый класс принято выделить антенны с обработкой сигнала. В частности, одним из таких устройств являются антенны с виртуальной (синтезированной) апертурой , применяемые в авиационной и космической технике для задач картографирования и увеличения разрешающей способности за счёт использования когерентного накопления и обработки сигнала.

Принцип действия

Иллюстрация трансформации параллельного контура в дипольную антенну. Синие линии - силовые линии электрического поля, красные - магнитного

Упрощенно принцип действия антенны состоит в следующем. Как правило, конструкция антенны содержит металлические (токопроводящие) элементы, соединенные электрически (непосредственно или через питающую линию - фидер ) с радиопередатчиком или с радиоприемником. В режиме передачи переменный электрический ток , создаваемый источником (например, радиопередатчиком), протекающий по токопроводящим элементам такой антенны, в соответствии с законом Ампера порождает вокруг себя переменное магнитное поле . Это меняющееся во времени магнитное поле в свою очередь, в соответствии с законом Фарадея , создает вокруг себя меняющееся во времени электрическое поле . Это переменное электрическое поле создает вокруг себя переменное магнитное поле и так далее - возникает взаимосвязанное переменное электромагнитное поле , образующее электромагнитную волну , распространяющуюся от антенны в пространство. В режиме приема переменное электромагнитное поле падающей на антенну волны наводит токи на токопроводящих элементах конструкции антенны, которые поступают в нагрузку (фидер, радиоприемник).

Характеристики антенн

Электромагнитное излучение, создаваемое антенной, обладает свойствами направленности и поляризации . Антенна как двухполюсник обладает входным сопротивлением (импедансом). Лишь часть энергии источника антенна преобразует в электромагнитную волну, остальная расходуется в виде тепловых потерь. Для количественной оценки перечисленных и ряда других свойств антенна описывается набором электрических характеристик и параметров, в частности:

Пример диаграммы направленности антенны и параметры: ширина ДН, КНД, УБЛ, коэффициент подавления обратного излучения

    характеристика направленности

    диаграмма направленности (ДН)

    коэффициент направленного действия (КНД)

    коэффициент усиления (КУ)

    ширина ДН по заданному уровню

    уровень боковых лепестков (УБЛ)

    фазовая диаграмма

    резонансная частота , рабочая полоса частот

    поляризационная диаграмма

    номинальное входное сопротивление антенны, тип линии питания

    входной импеданс и коэффициент стоячей волны (КСВ) в линии питания

    коэффициент полезного действия (КПД)

    Коэффициент использования поверхности (КИП) апертуры антенны

    шумовая температура антенны (Т А)

    максимальная допустимая мощность на входе

К характеристикам антенн также можно отнести следующие:

    эффективная площадь рассеяния (ЭПР)

    эквивалентная изотропно излучаемая мощность (ЭИИМ)

Ряд характеристик антенн как взаимных устройств (пассивных линейных многополюсников) в режиме передачи и в режиме приема совпадает, в том числе: ДН (КНД, КУ, УБЛ), входной импеданс. Например, ДН антенны в режиме приема и в режиме передачи совпадают.

К конструктивным характеристикам и параметрам антенн относятся, в частности:

    масса, координаты центра масс, момент инерции

    габаритные размеры, максимальный радиус разворота

    объект установки, способ крепления

    примененные материалы

Основные типы антенн

Телевизионные директорные антенны метрового и дециметрового диапазонов горизонтальной поляризации

Уголковые антенны на первом искусственном спутнике Земли разработаны профессором РТФ МЭИ Марковым Г.Т.

Волноводно-щелевая ФАР в составе головки самонаведения противокорабельной ракеты Х-35 Э.МАКС-2005

    Вибраторная антенна

    • Симметричный вибратор (диполь)

      Несимметричный вибратор

      • Антенна Ground Plane

        Укороченная штыревая антенна

        Колинеарная антенна

        "Коаксиальная" антенна

        J-образная антенна

        Антенна зенитного излучения

        Вертикальная антенна верхнего питания

    • Шунтовой вибратор

      Петлевой вибратор ("Петлевой вибратор Пистолькорса")

      Широкополосный "Диполь Надененко "

      Турникетная антенна

      Директорная антенна

      • Волновой канал (антенна Уда-Яги)

      Антенна СГ (синфазная горизонтальная)

    Щелевая антенна

    • Щелевой вибратор

      Волноводно-щелевая антенна

    Апертурная антенна - антенна, излучение у которой происходит через раскрыв (плоское отверстие - апертуру). Используются в СВЧ-диапазоне.

    • Рупорная антенна

      Зеркальная антенна

      • Прямофокусная зеркальная антенна

        Офсетная зеркальная антенна

        Антенна Кассегрена

        Антенна Грегори

        Зеркальная антенна с косекансной диаграммой направленности

        Зонтичная антенна

        Рупорно-параболические антенны

        Перископическая антенна

    • Линзовая антенна

      Антенна с синтезированной апертурой .

    Антенна бегущей волны

    • Спиральная антенна

      Диэлектрическая стержневая антенна

      Импедансные антенны

      Антенна вытекающей волны

      Антенна Бевереджа

      V-образная антенна

      Ромбическая антенна

      Антенна БС

    Антенны диапазона СВЧ

    • Микрополосковая антенна

      Патч-антенны

      Сингулярная антенна

    Чип-антенна (антненна, монтируемая по технологии SMD )

    Антенны оптического диапазона

    • Наноантенна

    Сверхширокополосные антенны

    • Антенна на принципе электродинамического подобия

      • Дискоконусная антенна

        Излучатель типа "бабочка"

    • Логопериодическая антенна (Логарифмическая периодическая антенна)

      Фрактальная антенна

    • Антенна Вивальди

    Антенная решетка (система излучения)

    • Фазированная антенная решётка

      Пассивные ФАР

      Активные ФАР - с нелинейными преобразованиями сигнала в полотне решётки

      Цифровая антенная решётка - активная ФАР с применением алгоритмов цифровой обработки сигнала непосредственно в полотне

      MIMO -антенна

    Антенны с линейными размерами << λ )

    • Магнитная антенна

      CFA-антенна

      EH-антенна

    Распределённые антенны

    • Частично излучающий кабель (коаксиальный кабель с намеренно ухудшенной экранировкой)

    Антенны для преобразования энергии электромагнитной волны в электрическую энергию и для средств RFID

    • Ректенна - антенна + выпрямитель

      Наноантенна - антенна для резонансного преобразования излучения оптического диапазона в электрическую энергию

    Псевдо-антенны (антенны с мифическими техническими характеристиками)

    • Ртутная антенна

    Концептуальные антенны

    • Гравитационная антенна

Примеры выдающихся конструкций

    Антенна АДУ-1000

    Антенна РТ-70

    Антенна загоризонтной РЛС "Дуга"

    Антенна станции зондирования ионосферы HAARP

    Антенна радиообсерватории Аресибо

Средства защиты от внешних воздействий

  • Радом

  • Противообледенительные системы

    Защита от птиц

Интересные сведения

Электрические параметры антенны (ДН, входное сопротивление) не изменятся, если изменить все ее размеры и длину волны в одинаковое число раз (принцип электродинамического подобия).

Амплитудно-фазовое распределение (распределение комплексной амплитуды тока как функции координат по апертуре антенны) и диаграмма направленности антенны в дальней зоне как функция угловых координат (пространственных частот ) связаны преобразованием Фурье . При нахождении формы ДН удобно использовать теоремы относительно преобразования Фурье. Размеры антенн с синтезированной апертурой могут составлять десятки и сотни километров. Параметры пассивных антенн в линейных негиротропных средах не зависят от того, работает ли антенна на прием или на передачу (теорема взаимности).

Литература:

1) Литература: В.В. Фролов, Язык радиосхем, Москва, 1998

2) http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D1%82%D0%B5%D0%BD%D0%BD%D0%B0

Антенны (от лат. слова antenna -- мачта, рея) В передатчиках служат для преобразования радиочастотных электрических колебаний в энергию электромагнитного поля (радиоволн), в приемниках - для преобразования энергии радиоволн в токи радиочастоты. Любую антенну можно использовать как для передачи, так и для приема, причем ее характеристики (диапазон частот, направленные свойства и др.) сохраняются. Этим в значительной мере объясняется тот факт, что назначение антенны (приемная или передающая) ее условное обозначение обычно не отражает. Само расположение символа антенны на схеме однозначно определяет ее функцию (напомним, что развитие схемы, как правило, происходит слева направо).

Общее обозначение антенны (см. рис. 2 и 19,ж) применяют в тех случаях, когда нужно показать несимметричную антенну, т. е. антенну, соединяемую с передатчиком или приемником одним проводом (вторым проводам служит земля). Такие антенны используют в диапазонах длинных, средних и коротких воли. В ультракоротковолновом диапазоне, а также в коротковолновом применяют симметричные антенны, т. е. антенны с двухпроводным выходом (или входом). Общее обозначение симметричной антенны отличается от указанных наличием двух выводов (рис. 154,а).

Назначение и особенности антенны в самом общем виде показывают знаками направления распространения потока электромагнитной энергии. Символы приемной, передающей и приемно-передающей антенны, построенные с применением этих знаков, показаны на рис. 40,в-д.

Стандарт ЕСКД предусматривает специальные знаки для указания таких особенностей антенн, как ширина и характер движения (вращение, качание) главного лепестка диаграммы направленности, тип поляризации, направленность по азимуту и высоте и т. д. В качестве примеров использования таких знаков на рис. 154 показаны условные обозначения вращающейся антенны (б) и антенн с горизонтальной (в) и вертикальной (г) поляризацией.

Для повышения эффективности несимметричных передающих и приемных антенн используют заземление (в простейшем случае - это металлический лист или труба, зарытые на глубину почвенных вод). На схемах заземление изображают тремя короткими штрихами, вписанными в прямой угол (рис. 155,а). Иногда вместо заземления применяют противовес - большое число проводов, натянутых над поверхностью земли на небольшой высоте. Такое устройство обозначают двумя параллельными линиями разной длины, большая из которых символизирует землю (рис. 155,6).

Рассмотренные условные обозначения построены функциональным методом. Другими словами, за их основу взят общий символ антенны, а характеристики выражены вспомогательными знаками. В радиотехнике такие обозначения применяют в основном в структурных и функциональных схемах, т. е. на первых этапах разработки прибора, когда характеристики антенны определены, а конкретный тип ее еще не выбран.

В принципиальных схемах чаще используют условные графические обозначения, напоминающие предельно упрощенные рисунки конкретных разновидностей антенн. Так, простейшую антенну - несимметричный вибратор (вертикальный провод, штырь) изображают отрезком вертикальной утолщенной линии (рис. 156). Подобные антенны применяют в диапазонах длинных, средних, коротких и ультракоротких волн. Однако для хорошей работы такой антенны ее длина должна быть равна примерно четверти длины рабочей волны. В диапазонах коротких и ультракоротких волн, длина которых не превышает нес-

кольких десятков метров, это требование выполнить легко, а вот на средних и тем более на длинных волнах - гораздо труднее, так как четверть длины волны в этих диапазонах достигает сотен метров. Чтобы не строить дорогостоящие высотные сооружения, к верхнему концу вертикального провода (вибратора) присоединяют один или несколько горизонтальных проводов, действие которых заключается в кажущемся удлинении вибратора. На схемах Г-образную и Т-образную антенны обозначают символами, наглядно передающими их характерные особенности (рис. 157,а, б).

У рассмотренных несимметричных вибраторов излучателем (приемником) радиоволн служит вертикальная часть. В диапазонах же коротких и ультракоротких волн в силу особенностей их распространения обычно применяют антенны, у которых рабочими являются горизонтальные части. Простейшей антенной в эдах диапазонах является симметричный вибратор, представляющий собой два изолированных горизонтальных проводника одинаковой длины, между которыми подключена двухпроводная линия, соединяющая антенну с приемником или передатчиком. Эту линию связи называют фидером (от англ. feeder - питатель). Общая длина вибратора обычно равна примерно половине длины рабочей волны. «

Симметричный вибратор (его условное графическое обозначение показано на рис. 158) обладает явно выраженными направленными свойствами. Лучше всего он принимает или излучает в плоскости, перпендикулярной его оси, ху-

же всего - в плоскостях, проходящих через нее. Поэтому такую. антенну (например, для приема телевидения) располагают таким образом, чтобы ее горизонтальные части (плечи) были перпендикулярны направлению на телецентр.

На практике часто требуется, чтобы антенна могла излучать или принимать радиоволны в достаточно широкой полосе частот. Достигают этого ис; пользованием в качестве плеч вибратора нескольких параллельных провод,ни ков, соединенных концами. Антенны такой конструкции, известные под названием диполя Надененко, нашли широкое применение в коротковолновой связи. С той же целью (расширение диапазона частот) телевизионные антенны часто изготовляют из отрезков толстых трубок или применяют сложные вибраторы, например петлевые.

Петлевой вибратор представляет собой два полуволновых вибратора, соединенных концами. Эта особенность конструкции петлевого вибратора нашла отражение и в его условном обозначении (рис. 159).

Важным условием хорошей работы антенны является согласование ее входного сопротивления с волновым сопротивлением фидера , так как только в этом случае она может излучать или принимать наибольшую мощность. Для согласования антенн с фидером используют специальные устройства в виде отрезков двухпроводных линий или применяют так называемое шунтовое питание вибраторов.

Симметричный вибратор шунтового питания представляет собой сплошной проводник длиной, также равной половине длины волиы. Фидер подключают к нему в двух точках, расположенных симметрично относительно его середины. Изменяя места подключения фидера к вибратору, можно добиться равенству входного сопротивления антенны волновому сопротивлению фидера, т. е. согласования. Точно так же согласовывают с фидером и петлевые вибраторы шунтового питания. Условное обозначение полуволнового вибратора с шунто-вым питанием представлено на рис. 160.

Принадлежность к антенным устройствам показывают общим символом, помещая его над серединой условного обозначения магнитопровода. Обмотки магнитной антенны обычно используют в качестве катушек входных колебательных контуров, поэтому обозначают их кодом катушек - латинской буквой L, а возможность подстройки их индуктивности (перемещением по магнитопроводу) показывают уже знакомым знаком подстроечного регулирования (рис. 169,6).

Литература:
В.В. Фролов, Язык радиосхем, Москва, 1998

НАЗНАЧЕНИЕ АНТЕННАнтенны - РТ устройства предназначенные для
излучения и приема электромагнитных волн.
ИЗЛУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН
ПРИЁМ ЭЛЕКТРОМАГНИТНЫХ
антенна антенна
ВОЛН
Передат
чик
фидер
фидер
Приём
ник

КЛАССИФИКАЦИЯ АНТЕНН

ПО ДИАПАЗОННОМУ ПРИЗНАКУ
ПО ХАРАКТЕРУ ИЗЛУЧАЮЩИХ
ЭЛЕМЕНТОВ
ПО ВИДУ РАДИОТЕХНИЧЕСКОЙ
СИСТЕМЫ, В КОТОРОЙ ИСПОЛЬЗУЕТСЯ
АНТЕННА

ПО ДИАПАЗОННОМУ ПРИЗНАКУ

АНТЕННЫ ДЛИННЫХ И СРЕДНИХ
ВОЛН
АНТЕННЫ КОРОТКИХ ВОЛН
АНТЕННЫ УЛЬТРАКОРОТКИХ ВОЛН

ПО ХАРАКТЕРУ ИЗЛУЧАЮ-ЩИХ ПОВЕРХНОСТЕЙ

ПО ХАРАКТЕРУ ИЗЛУЧАЮЩИХ ПОВЕРХНОСТЕЙ
ВИБРАТОРНЫЕ АНТЕННЫ
ЩЕЛЕВЫЕ АНТЕННЫ
АНТЕННЫ ПОПЕРЕЧНОГО И
ОСЕВОГО ИЗЛУЧЕНИЙ
АПЕРТУРНЫЕ АНТЕННЫ
АНТЕННЫ ПОВЕРХНОСТНЫХ ВОЛН

ПО ВИДУ РАДИОТЕХНИ-ЧЕСКОЙ СИСТЕМЫ

ПО ВИДУ РАДИОТЕХНИЧЕСКОЙ СИСТЕМЫ
АНТЕННЫ ДЛЯ РАДИОСВЯЗИ
АНТЕННЫ ДЛЯ РАДИОВЕЩАНИЯ
АНТЕННЫ ТЕЛЕВИЗИОННЫЕ
АНТЕННЫ ДЛЯ РАДИОНАВИГАЦИИ
И РАДИОЛОКАЦИИ

АНТЕННЫ ДЛИННЫХ И СРЕДНИХ ВОЛН

ДИАПАЗОНЫ РАБОЧИХ ЧАСТОТ
МИРИАМЕТРОВЫЕ (СВЕРХДЛИННЫЕ)
ВОЛНЫ (l =10…100 км)
КИЛОМЕТРОВЫЕ (ДЛИННЫЕ) ВОЛНЫ
(l =1…10 км)
ГЕКТОМЕТРОВЫЕ (СРЕДНИЕ) ВОЛНЫ
(l =100…1000 м)

АНТЕННЫ КОРОТКИХ ВОЛН

ДИАПАЗОНЫ РАБОЧИХ ЧАСТОТ
ДЕКАМЕТРОВЫЕ (КОРОТКИЕ)
ВОЛНЫ (l =10…100 м)

АНТЕННЫ УЛЬТРАКОРОТКИХ ВОЛН

ДИАПАЗОНЫ РАБОЧИХ ЧАСТОТ
МЕТРОВЫЕ ВОЛНЫ (l =1…10 м)
ДЕЦИМЕТРОВЫЕ ВОЛНЫ (l =10 см …1 м)
САНТИМЕТРОВЫЕ ВОЛНЫ (l =1…10 см)
МИЛЛИМЕТРОВЫЕ ВОЛНЫ (l =1…10 мм)

из-за особенностей распространения СДВ, ДВ и
СВ максимум излучения антенн этих диапазонов
должен быть направлен вдоль поверхности земли
обычно на СДВ и ДВ приемлемая высота опор
составляет 150…250 м. Некоторые СВ-антенны
имеют высоту до 350 и даже до 500 м. В СВдиапазоне высота антенны может быть соизмерима
с длиной волны и равна обычно (0.15…0.63)l .
антенны выполняют в виде антенн-мачт или
антенн-башен. высота антенных опор определяется
технико-экономическими соображениями

ОСОБЕННОСТИ АНТЕНН ДЛИННЫХ И СРЕДНИХ ВОЛН

антенны сверхдлинных и длинных волн находят
свое применение в радиотелеграфной связи, в
дальней навигации, при передаче сигналов
точного времени, а антенны средних волн для
радиовещания, морской связи.
в качестве передающих антенн применяют
антенны - мачты различных типов с подведением
больших мощностей, а в качестве приемных вертикальные несимметричные антенны, рамочные
антенны, антенны бегущей волны

ОСОБЕННОСТИ КОРОТКО-ВОЛНОВЫХ АНТЕНН

ОСОБЕННОСТИ КОРОТКОВОЛНОВЫХ АНТЕНН
на коротких волнах сравнительно просто
строить антенны, размеры которых превышают
длину волны в несколько раз и обуславливают
значительные направленные свойства
условия
прохождения
коротких
волн
определяются состоянием ионосферы, поэтому для
обеспечения непрерывной радиосвязи используют
антенны диапазонного типа

в качестве простых антенн на коротких волнах
применяют
горизонтальные
симметричные
вибраторы, диапазонные вибраторы Надененко,
шунтовые диапазонные вибраторы, уголковую
антенну Пистолькорса, антенны зенитного типа

АНТЕННЫ КВ-диапазона

ВИБРАТОРНАЯ
АНТЕННА

АНТЕННЫ КВ-диапазона

АНТЕННЫ «АКТИВНАЯ ПЕТЛЯ»

в этом диапазоне возможно построение антенн,
размеры которых велики по сравнению с длиной
волны, что позволяет реализовать высокую
направленность при приемлемых размерах
также
используют антенны УКВ, размеры
которых сравнимы с длиной волны (вибраторные,
щелевые). они используются как самостоятельные
антенны или как элементы более сложных (в
составе антенных решеток, в качестве облучателей
зеркальных антенн)

ОСОБЕННОСТИ АНТЕНН УКВ-ДИАПАЗОНА

условия
РРВ
этом
диапазоне
предъявляют повышенные требования
к механическим характеристикам
антенн, к прочности, массе, парусности
(антенны спутниковой, радиорелейной
связи)

В городах кабельное телевиденье практически полностью вытеснило «беспроводных» конкурентов, но все равно спрос на ТВ-антенны есть. Для того чтобы принимать эфирное ТВ нужно подобрать устройство подходящее под вашу местность по конструкции и диапазону. Особенно часто такая необходимость возникает в деревне и частном секторе. В этой статье мы рассмотрим какими бывают антенны для телевизора и как её правильно выбрать.

Основы

Прежде чем перейти к разговору о видах телевизионных антенн стоит рассказать о базовых терминах, которые будут использоваться в статье.

Устройство которое принимает и усиливает радиосигнал и передаёт окружающим его абонентов. В народе его называют ТВ-вышкой. Её внешний вид вы видите на рисунке ниже.

Антенна - устройство для приема или передачи радиоволн. Её основная задача - преобразовать электромагнитные волны в сигнал (на приеме) и наоборот (для передачи). Её подключают к приемнику, в нашем случае к телевизору. Одними из основных характеристик для потребителя являются диаграмма направленности, коэффициент усиления и рабочая частота.

Усилитель - устанавливается между антенной и приемником. Задача этого устройства усилить полосу частот принимаемого диапазона. О них мы уже писали подробную статью ранее.

Какие бывают антенны?

В разговоре об антеннах для телевизора не совсем рационально использовать «книжную» классификацию этих устройств, это, во-первых, бесполезно, а, во-вторых - будет сложно для неподготовленного читателя. Мы несколько упростим терминологию и расскажем простым языком какие бывают антенны для приема ТВ-сигнала.

Диапазон принимаемых частот ТВ-каналы в РФ и странах бывшего советского союза передаются по метровому (сокращенно МВ - частоты от 30 до 300 МГц) и дециметровому (ДМВ, частоты 300 МГц - 3 ГГц). Основная часть каналов передаётся в ДМВ-диапазоне, а в МВ - в основном местное городское ТВ.

Обобщенно можно выделить широкополосные и узкополосные антенны. Но за широкую полосу принимаемых частот приходится платить качеством приема.

Направленность антенн

Бывают всенаправленные и узконаправленные антенны. Говоря простым языком направленность антенны - это её поле зрения, и чем оно уже, тем большая дальность действия антенны и вы сможете принять сигнал с более удаленного ретранслятора. Большая часть телевизионных антенн направленные, то есть их нужно располагать в пространстве так, чтобы диаграмма её направленности смотрела в сторону расположения ретранслятора.

Внутренние и внешние антенны

Внутренние или комнатные телевизионные антенны устанавливают в помещении, такие изделия многим знакомы из детства. Они устанавливались либо прямо на телевизор, либо на ближайший подоконник. Обычно выглядели как два «рога» - это были штыревые часто телескопические антенны.

Такие антенны хоть и удобны тем, что практически не требуют настройки, нужно было лишь подключить, а возможно и слегка полиеперемещать по комнате, но хорошего сигнала можно добиться можно если ретранслятор находится не слишком далеко - на расстоянии до 15, а в лучшем случае до 20 км (редко и маловероятно). Хотя на прием влияет и погода и количество преград на пути сигнала, об этом мы поговорим позже.

Такие антенны делят на три типа:

1. Штыревые. Штыри могут быть цельными и телескопическими.

2. Рамочные. Металлическая рамка, изогнутая в круглую форму, но это не обязательно форма может и отличаться

3. Комбинированные - совмещенное изделие со штырями и рамкой - так получается добиться большей дальности приема и качества сигнала.

На рисунке выше вы видите комбинированную антенну с рамкой и двумя телескопическими штырями.

Внешние или уличные антенны размещаются на балконе, фасаде дома или на его крыше. В последнем варианте вы можете точно направить антенну на передающую вышку. Обычно их внешний вид подобен тем, что изображена на рисунке ниже.

Но на современном рынке представлены не совсем обычные модели - плоские антенны.

CIFRA-12 - внешняя панельная направленная антенна с усилением до 12 dBi, по заявлениям производителя предназначена для приема цифрового телевиденья DVB-T/DVB-T2

Их еще называют MIMO, панельными или патч-антеннами. Её принимающий элемент выполнен либо из металлических пластин, либо расположен на печатной плате. При прочих равных обеспечивают большую ширину принимаемого канала.

Активные и пассивные

Активные антенны - в них устанавливают . Он может питаться как от отдельного источника питания 12В, а 5-вольтовые усилители питают либо от источника питания, либо напрямую по кабелю от телевизора или тюнера, если в них, конечно, встроена такая функция.

Пассивные модели работают без усилителя, но и уровень сигнала с них ниже. Это значит, что в удаленной местности их прием телеканалов будет либо затруднен, либо и вовсе невозможен, хотя это сильно зависит от конструкции антенны.

Спутниковые

Спутниковое телевиденье это отдельный вид передачи ТВ-сигнала со спутника на соответствующую антенну.

Различают различные диапазоны частот на который передают сигнал спутники:

    L - 1452-1550 МГц и 1610-1710 МГц;

    S - 1930-2700 МГц;

    C - 3400 -5250 МГц и 5725 - 7075 МГц;

    X - 7250-8400 МГц;

    Ku - 10,70-12,75 ГГц и 12,75 - 14,80 ГГц;

    Ka - 15,40-26,50 ГГц и 27,00 - 30,20 ГГц;

    K - 84,0-86,0 ГГц.

В основном большинство система работают в C и Ku-диапазонах, а в Европе и Америке также популярен диапазон Ka. Для чего нужна эта информация? Дело в том, что размеры антенн уменьшаются с ростом частоты. То есть при одинаковых размерах антенна при приёме Ku будет работать эффективнее, чем для приема волн из диапазона C, а сигнал будет на 9.5 дБ сильнее на Ku. В размерах одинаковый результат при приеме дадут антенны 2.4-4.5 м для C и 0.6-1.5 м для Ku, соответственно.

Конструктивно спутниковые антенны напоминают тарелки, собственно поэтому их так и называют в народе. Выполняют их в виде вогнутого в параболическую форму диска в центре фокусировки которого расположены принимающие головки - правильное их название LNB-конвертер (Low-noise block downconerter).

Спутниковые антенны бывают:

    Стальные - прочные и тяжелые. Их преимущество в том, что они слишком боятся ударов при транспортировке и эксплуатации. А недостаток в том, что со временем может сойти покрытие и они начинают ржаветь, а также из-за тяжелого веса нужно предусматривать надежное крепление для них, но это же позволяет добиться большей устойчивости при ветре.

    Алюминиевыми - легкие. Их преимущество в легком весе, значит и требования к креплениям не такие жесткие. Однако мягкость алюминия является недостатком таким антенн - их можно повредить при транспортировке, или, когда она уже будет установлена, в результате ударов во время бури и прочего.

По форме бывают:

    Прямофокусные. Правильная круглая форма, которая образуется в результате вращения параболы, если выразится простым языком. Диаметром могут быть от 0.55 до 3.7 м, их часто используют в C и Ku диапазонах. При маленьких размерах часть приемного зеркала затеняется и качество сигнала ухудшается. Такие антенны чаще используют для связи с дальними спутниками.

    Офсетные. Их чаще принимают для частного приема телевиденья. Их форма слегка вытянутая, из-за чего точка фокусировки и, следовательно, расположение приемных головок смещена к нижней стороне, смотрите на рисунке ниже.

Также спутниковые тарелки бывают различных исполнений - «сплошными» и перфорированными.

«Сплошные» тарелки более распространены, а перфорированные легче, но дороже и у них есть преимущество - самоочистка от дождя и снега. Из-за конструкции они меньше расшатываются от ветра, значит и меньше нагрузка на несущую конструкцию и уменьшается вероятность того, что собьётся направление антенны во время сильной бури.

Спутниковые тарелки бывают разных диаметров и чем больше диаметр - тем лучше сигнал. Поэтому модель антенны нужного диаметра подбирают под мощность сигнала в предполагаемом месте приёма.

Что влияет на эффективность приёма

Подведем небольшие итоги и перечислим условия, которые влияют на качество приема телесигнала.

1. Расстояние до ретранслятора. Чем ближе - тем лучше, но, если у вас активная антенна уровень сигнала может быть слишком сильным тогда качество картинки тоже будет плохим.

2. Конструкция и тип антенны.

3. Для комнатных антенн критична их установка - количество стен до уличной. Чем ближе к наружной стене - тем больше вероятность получения хорошего сигнала.

4. Высота установки, прямая видимость телевышки и количество препятствий между антенной и ретранслятором.

5. Погодные условия. В метель и ливень сигнал ослабевает.

Сколько стоит качественный ТВ-приём?

Чтобы облегчить вам выбор мы составили таблицу интересных моделей с актуальными ценами различных конструкций и из разных центовых диапазонов.

Заключение

Информация особенно актуальна для жителей Украины. В связи с тем, что произошёл переход на цифровое телевещание, продавцы наживаются на незнании людей продавай им «специальные антенны для DVB-T/DVB-T2 телевидения». Дело в том, что вещание происходит на тех же частотах что и аналоговое, поэтому вам не придется ничего менять, а нужно лишь докупить DVB-T тюнер, подобный тому, что используют со спутниковой тарелкой, кстати его название - DVB-S. Фактически выбор телевизионных антенн - это дело индивидуальное, поэтому рекомендуем посетить тематические форумы, или еще проще посмотреть, что установлено у соседей и в какую сторону направлено.